Fourth Semester B.Sc. Degree Examination, April/May 2019

(CBCS Scheme)

Mathematics

Paper 4.1 – ALGEBRA AND CALCULUS – 2

Time: 3 Hours] [Max. Marks: 90

Instructions to Candidates: Answers ALL the questions.

I. Answer any **SIX** of the following.

 $(6 \times 2 = 12)$

- 1. Evaluate $\int (x+y)dx + (y-x)dy$ along the parabola $y^2 = x$ from (1, 1) to (4, 2).
- 2. Evaluate $\int_{0.1}^{3.2} (x^2 + 3y^2) dy dx$.
- 3. If $r = \sqrt{x^2 + y^2 + z^2}$ find ∇r .
- 4. Prove that div (grad ϕ) = $\nabla^2 \phi$.
- 5. Show that the subset $H = \{1, -1\}$ is a subgroup of group $G = \{1, -1, i, -i\}$ with respect to multiplication.
- 6. Find the number of generators of a cyclic group of order 60.
- 7. Prove that every subgroup of an Abelian group is normal subgroup.
- 8. Define endomorphism and automorphism.
- II. Answer any **SIX** of the following:

 $(6 \times 3 = 18)$

- 9. Evaluate $\int_{0}^{1} \int_{0}^{x^2} e^{y/x} dy dx$.
- 10. Evaluate $\int_{0}^{1} \int_{0}^{2} x^2 yz \, dz \, dy \, dx$.
- 11. Find the unit vector normal to the surface $x^2 + 2y 3z = 5$ at (1, 2, 0).

Q.P. Code - 42439

- 12. Show that $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ is irrotational.
- 13. If *H* is a subgroup of group *G* then prove that $H = H^{-1}$.
- 14. Prove that every cyclic group is an Abelian group.
- 15. Prove that intersection of two normal subgroups of a group G is normal subgroup of G.
- 16. If $f: G \to G'$ defined by $f(x) = \log_{10} x$, $\forall x \in G$ where G is a multiplicative group of positive real numbers and G' is the additive group of real numbers. Verify f is homomorphism. Also find Kernal at homomorphism.
- III. Answer any THREE of the following.

- $(3\times 5=15)$
- 17. Evaluate $\int_{C} [(x+2y)dx + (4-2x)dy]$ around the ellipse whose equation is $\frac{x^2}{16} + \frac{y^2}{9} = 1.$
- 18. Evaluate $\iint_S x^2 dx dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 19. Evaluate $\int_{0}^{\infty} \int_{x}^{e^{-y}} \frac{dy}{y} dx$ by changing the order of integration.
- 20. Evaluate $\iint_{v} xyz \, dz \, dy \, dx$ where v is bounded by the plane x = 0, y = 0, z = 0 and x + y + z = 1.
- IV. Answer any **THREE** of the following:

- $(3 \times 5 = 15)$
- 21. Find the angle of intersection of the sphere $x^2 + y^2 + z^2 = 29$ and $x^2 + y^2 + z^2 + 4x 6y 8z 47 = 0$ at (4, -3, 1) common to them.
- 22. Prove that $div(r^3 \cdot \vec{r}) = 6r^3$ where $\vec{r} = \hat{x}_1 + \hat{y}_1 + z\hat{k}$.
- 23. If ϕ is a scalar function and \vec{A} is a vector function then prove that $\operatorname{curl}(\phi \vec{A}) = \phi(\operatorname{curl} \vec{A}) + [\operatorname{grad} \phi] \times \vec{A}$
- 24. State and prove Green's theorem.

Q.P. Code - 42439

V. Answer any **THREE** of the following:

$$(3\times 5=15)$$

- 25. Prove that $G = \{1, 5, 7, 11\}$ is an abelian group with respect to multiplicative modulo 12.
- 26. If H and K are any two subgroups of a group G then prove that HK is a subgroup iff HK = KH.
- 27. In a group $G, \forall a \in G$ then prove that $O(a) = O(a^{-1})$.
- 28. State and prove Lagrange's theorem.
- VI. Answer any **THREE** of the following:

$$(3\times 5=15)$$

- 29. Prove that A subgroup H of a group G is normal iff every right coset of H in G is a left coset of H in G.
- 30. If N is a normal subgroup of G and H is only subgroup of G, then prove that NH is a subgroup of G.
- 31. If $f: G \to G'$ is homomorphism of groups then prove that
 - (a) f(e) = e' where $e \in G$ and $e' \in G'$
 - (b) $f(a^{-1}) = [f(a)]^{-1} \forall a \in G$
- 32. If $f:G\to G'$ be a homomorphism of groups with Kernal K then prove that K is normal subgroup of G.